ТехСправочник
Суббота, 25.11.2017, 14:36
Меню справочника

Форма входа

Категории раздела
Газовая сварка и резка металлов. [57]
Монтаж и эксплуатация подшипниковых узлов. [32]
Муфты приводов - справочные материалы. [7]
Вентиляционное оборудование - справочник. [34]
Справочник по обработке инструментальных материалов [40]
Справочник по деревообрабатывающему инструменту. [41]
Справочник по художественному литью. [44]
Справочное пособие слесаря-сборщика [33]
Справочник по чеканке металла. [13]

Поиск по справочнику

Календарь
«  Февраль 2016  »
ПнВтСрЧтПтСбВс
1234567
891011121314
15161718192021
22232425262728
29

Наш опрос
Оставьте отзыв о моем сайте
Всего ответов: 190

Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Главная » 2016 » Февраль » 5 » Сущность процесса кислородно-флюсовой резки. Аппаратура для кислородно-флюсовой резки.
20:31
Сущность процесса кислородно-флюсовой резки. Аппаратура для кислородно-флюсовой резки.





Сущность процесса кислородно-флюсовой резки

Высоколегированные хромистые, хромоникелиевые стали, чугун и цветные металлы не могут подвергаться обычной кислородной резке, так как они не удовлетворяют основным условиям резки. Хромистые и хромоникелевые нержавеющие стали на поверхности реза образуют тугоплавкие окислы хрома с температурой плавления около 2000° С, которые препятствуют нормальному протеканию процесса резки.

30. Химический состав железных порошков для кислородно-флюсовой резки

Поэтому кислородная резка этих сталей требует применения особых способов.
Чугун имеет температуру плавления ниже температуры воспламенения, поэтому при обычной резке чугун будет плавиться, а не сгорать в кислороде. Содержащийся в чугуне кремний, образует тугоплавкую окись кремния, которая также препятствует резке.
Цветные металлы (медь, алюминий, латунь, бронза) имеют большую теплопроводность, образуют тугоплавкие окислы и также не поддаются обычной газовой резке. Удалить тугоплавкие окислы можно либо переводом их в легкоплавкие, либо введением в зону реза дополнительного тепла.
Резку высоколегированных сталей можно обеспечить наложением вдоль линии реза низкоуглеродистой стальной полосы, при сгорании которой выделившееся тепло, а также переходящее в шлак расплавленное железо и его окислы способствуют разжижению окислов хрома. Этим способом можно резать нержавеющие стали толщиной до 20 мм, однако при этом рез получается широким, а скорость резки низкая.
Для резки хромистых, хромоникелевых нержавеющих сталей, чугуна и цветных металлов применяют способ кислородно-флюсовой резки. Сущность кислородно-флюсовой резки заключается в том, что в разрез вместе с режущим кислородом вводится порошкообразный флюс, при сгорании которого выделяется дополнительное тепло и повышается температура в зоне реза. Кроме того, продукты сгорания флюса, взаимодействуя с тугоплавкими окислами, образуют жидкотекучие шлаки, которые легко удаляются из зоны реза, не препятствуя нормальному протеканию процесса.
Основным компонентом порошкообразных флюсов, применяемых при кислородно-флюсовой резке металлов, является железный порошок. Железный порошок при сгорании выделяет большое количество тепла (около 1800 ккал/кг). При выборе железного порошка необходимо иметь в виду, что процесс резки зависит от его химического состава и его грануляции. При использовании порошков, содержащих до 0,4% углерода и до 0,6% кислорода, процесс резки нержавеющей стали протекает устойчиво. Дальнейшее увеличение содержания углерода и кислорода в порошке приводит к увеличению расхода порошка и ухудшению качества поверхности реза.
Химический состав железных порошков, применяемых при кислородно-флюсовой резке по ГОСТ 9849—74, приведен в табл. 30.
При резке нержавеющих сталей содержание кислорода в порошке не должно превышать 6%. Кислород присутствует в порошке в виде окислов, которые замедляют процесс резки, так как требуют дополнительного тепла для их нагрева.
Основными критериями при выборе грануляции железного порошка являются обеспечение его наилучшей транспортировки и регулирование расхода. Опытами установлено, что лучшие результаты при кислородно-флюсовой резке дает железный порошок с размерами частичек от 0,07 до 0,16 мм. Опытами также установлено, что лучшие результаты при резке нержавеющих хромоникелевых сталей достигаются при добавлении к железному порошку ГО—Г5°/о алюминиевого порошка. Смесь железного и алюминиевого порошков дает жидкотекучий шлак, температура плавления которого не превышает 1300° С. Для резки нержавеющих сталей применяется алюминиевый порошок марки АГГВ.
Для поверхностной и разделительной резки нержавеющих сталей используют в качестве флюса смесь алюминиево-магниевого порошка с ферросилицием или

31. Составы флюсов для резки нержавеющих сталей силикокальцием.


Алюминиево-магниевый порошок, входящий во флюсовую смесь, сгорая в струе кислорода, повышает температуру пламени, а ферросилиций или силикокальций действуют на окислы хрома как флюсующая добавка. Составы флюсов, состоящих из железного и алюминиевого порошков, ферросилиция и силикокальция, приведены в табл. 31.

32. Составы флюсов для резки чугуна


Основная задача флюса при резке чугуна состоит в разбавлении флюса железом в области реза, снижении в сплаве содержания углерода, а также разжижения шлака, в котором содержится повышенное содержание кислорода. В состав флюсов для резки чугуна входят железный и алюминиевый порошок, кварцевый песок и феррофосфор. Состав флюсов для кислородно-флюсовой резки приведен в табл. 32.
Цветные металлы и сплавы подвергаются только кислородно-флюсовой резке с применением флюсов, составы которых приведены в табл. 33.

33. Составы флюсов для резки цветных металлов



Аппаратура для кислородно-флюсовой резки

Установки для кислородно-флюсовой резки состоят из двух основных частей: флюсолитагеля и резака (ручного или машинного). По конструкции флюсопитатели подразделяются на инжекторные, циклонные и с механической подачей. Применяются три схемы установок для кислородно-флюсовой резки: с внешней подачей флюса, с однопроводной подачей флюса под высоким давлением и с механической подачей флюса.
По первой схеме (рис. 87, а) флюс из бачка инжектируется кислородом и подается к резаку, укомплектованному специальной головкой. Газофлюсовая смесь,


выходящая из отверстий специальной головки, засасывается струей режущего кислорода и в смеси с ним поступает в зону реза. По этой схеме выполнены и работают установки кислородно-флюсовой резки УРХС-4, УРХС-5 и УРХС-6 конструкции ВНИИАвтогенмаша. При эксплуатации установки с внешней подачей флюса работают устойчиво и экономично.
Однопроводная схема подачи флюса под высоким давлением представлена на рис. 87,6. В этом случае железный порошок, кварцевый песок из бачка флюсопитателя инжектируются непосредственно струей режущего кислорода. Смесь флюса с кислородом по рукаву подводится к резаку через центральный канал мундштука и поступает к разрезаемому металлу. По этой схеме выполнена и работает установка флюсовой резки УФР-2 конструкции МВТУ им. Баумана.
Схема с механической подачей флюса представлена на рис. 87, в. По этой схеме флюс, состоящий из смеси алюминиево-магниевого порошка с силикокальцием, из бачка при помощи шнекового устройства подается к головке резака, где увлекается струей режущего кислорода.
Флюсопитатель ФПР-1-65 (рис. 88) состоит из бачка 1, регулировочного устройства 8 и редуктора 4. Бачок 1 представляет собой сварной сосуд, в крышке которого имеется горловина для засыпки флюса.

Рис. 88. Флюсопитатель ФПР-1-65 конструкции ВНИИАвтогенмаша

Нижний корпус бачка заканчивается штуцером, к которому присоединяется регулировочное устройство 8.
Флюсонесуший газ из баллона или трубопровода подается в редуктор 4, по выходе из которого разветвляется на два патрубка: один поступает в верхнюю часть бачка 1 для создания давления на флюс, второй —через регулирующий вентиль 5 по трубке в регулировочное устройство. Флюс из бачка ссылается в циклонную камеру, а поступающий через штуцер 7 флюсонесущий газ создает вихревой поток, захватывающий частицы флюса и уносящий их к оснастке резака.

Рис. 89. Установка для кислородно-флюсовой резки УРХС-4

Давление газа в бачке 1 флюсопитателя устанавливают по манометру 2. Для выпуска газа из бачка флюсопитателя служит вентиль. В случае повышения давления выше допустимого срабатывает предохранительное устройство (мембрана), установленное в бачке и смонтированное на колпачке горловины 3.
Для механизированной кислородно-флюсовой резки, если есть необходимость дистанционного включения недачи флюса в резак, Одесский завод «Автогенмаш> выпускает специальный флюс ал их а т е ль. В отличие от флюсопитателя ФГ1-1-65 газ поступает в бачок и регулировочное устройство через электромагнитный переключающий клапан и фильтр.
Установка УРХС-4 предназначена для разделительной резки хромистых, хромоникелевых сталей, чугуна, меди, латуни и бронзы. Установка разработана институтом В НИ И Автоген маш, работает по принципу внешней подачи флюса к резаку (рис. 89).
Ацетилен, проходя через водяной затвор 14, и кислород из баллона 15 через редуктор 16 поступают по рукавам в резак. Через тройник 11 часть кислорода подается в редуктор 12, оттуда через вентиль 13 поступает в корпус флюсопитателя 10 и штуцер циклонной камеры 6, в которую поступает флюс по каналу 8 из флюсопитателя 10. Кислород, проходя нагнал 7, засасывает флюс и подает его по рукаву 5 в резак, затем через вентиль 2 и трубку 4 флюс поступает в сопло 3 головки резака. Режущий кислород поступает в резак / по. шлангу 9. Техническая характеристика установки УРХС-4:
Скорость резки, мм/мин:
прямолинейной 270—760
фигурной 170—475
Давление кислорода, кгс/см2 5—10
Давление ацетилена, мм вод-, ст не ниже 300
Давление флюсоподающего кислорода, кгс/см2 . 0,35—0,45
Расход кислорода, м3/ч —25
Расход ацетилена, м3/ч 0,8—1,1
Расход флюса, кг/ч 6—9

В настоящее время вместо установка УРХС-4 наша промышленность выпускает установки УРХС-5 и УРХС-6 конструкции ВНИИАвтогенмаша. Принцип работы их подобен принципу работы установки УРХС-4, но отличается от нее некоторыми конструктивными особенностями флюсопитателя.
Установка УРХС-5 комплектуется резаком РАФ-1-65 и флюсопитателем ФП-1-65. Флюсопитатель имеет циклонную конструкцию, а резак — внешнюю подачу флюса. Схема установки УРХС-5 представлена на рис. 90. Установка состоит из флюсопитателя 1, резака 4, соединительных рукавов 2 и 3. Флюс из флюсопитателя 1 подается, в резак 4 но рукаву 3 и через флюсоподающие сопла головки засасывается режущей струей кислорода в полость реза. Расход флюса через циклонную камеру регулируется зазором между штоком и штуцером, величина зазора изменяется маховичком, а также давлением флюсоподающего газа. Давление флюсоподающего газа регулируется редуктором, подача флюса в резак контролируется вентилем 5.

Резаки, которые могут использоваться на установке УРХС-5, работают на ацетилене или газах-заменителях ацетилена.
Установка УРХС-5 используется для резки высоко-хромистых, хромоникелевых сталей толщиной до 200 мм, а при толщине от 200 до 500 мм применяется установка УРХС-6.
Установка УРХС-6 комплектуется флюсопитателем ФП-2-65 и резаком РАФ-2-65. Устройство ее аналогично устройству установки УРХС-5. Бункер флюсопитателя установки вмещает в себя 35 кг флюса. Кислород подается от рампы из десяти баллонов, ацетилен — от рампы из трех баллонов.
Резаки для кислородно-флюсовой резки отличаются от обычных (для кислородной резки) тем, что они имеют дополнительные устройства для подачи флюса. В зависимости от схемы подачи флюса они подразделяются на два типа. В резаках первого типа флюс подается в смеси с режущим кислородом к центральному каналу мундштука, резаки второго типа выполнены по схеме с внешней подачей флюса. По принципу смешения горючего газа и кислорода резаки разделяются на инжекторные и с внутрисопловым смешением.
В комплект кислородно-флюсовой установки УРХС-5 входит резак РАФ-1-65 (рис. 91). Резак изготовляется на базе серийного резака «Пламя». Он оснащен порошковым вентилем 4, служащим для включения и выключения подачи флюса. На головке резака закреплена колодочка 2, к которой присоединены две сменные втулки 3. Втулки устанавливаются под углом 25° к оси мундштука. Тройник 1 и система трубок связывают порошковый вентиль с колодочкой.
Установка УФР-5 конструкции МВТУ им. Баумана находит применение для порошково-кислородной резки железобетона. Установка состоит из флюсопитателя, который монтируется на тележке, копьедержателя ручного или машинного резаков, кислородной рампы на 10 баллонов, воздушной рампы на три баллона.
Для подачи флюса используется сжатый воздух, который должен быть очищен от масла и влаги. При работе от компрессора применяется селикагелевый осушитель, а для очистки — маслоотстойник. В качестве горючего газа могут быть использованы пропан-бутановая смесь или природный газ.

Рис. 92. Схема газо-кинематического флюсопитателя УФР-5

Флюсопитатель для установки УФР-5 представлен па рис. 92. Флюс засыпается через верхний патрубок 6, который вварен в крышку бункера 7. Рычажный механизм 3 осуществляет блокировку порошкового клапана 14 с рычажным газовым вентилем 4. Он служит для пуска и дозировки флюса и флюсоподающего газа. Тройник 8 предназначен для распределения подачи флюсоподающего газа к рычажному вентилю 4 ив циклонную камеру 15. Циклонная камера 15 обеспечивает подачу флюса в резак или копьедержатель. Закрепленный на циклонной камере вибратор 17 равномерно встряхивает бункер 1, устраняя тем самым возможность скапливания флюса перед входом в циклонную камеру 15. Бункер устанавливается на пружинах 12 для обеспечения лучшей вибрации.
Установка УФР-5 работает следующим образом. Кислород от рампового редуктора по рукаву поступает в резак или копьедержатель. Ацетилен по рукаву поступает в резак и в смеси с кислородом образует подогревающее пламя. Сжатый воздух по рукаву подается к вибратору 17, тройнику 8 и газовому вентилю 9. Для продувки циклонной камеры вначале открывают газовый вентиль 9, а затем маховичком 5 открывают рычажный вентиль 4 и порошковый клапан 14. При повороте маховичка 5 против часовой стрелки конус порошкового клапана 14 опускается и флюс из бункера 1 начинает пересыпаться в коническую камеру 2. Одновременно с этим открывается рычажный вентиль 4, и сжатый воздух проходит по каналу внутри вертикальной тяги 13, захватывая флюс из конической камеры 2 в циклонную камеру 15. Часть воздуха по рукаву 10 отводится в верхнюю часть бункера 1 и по трубке 11, которая соединяется с нижней частью конической камеры 2, выравнивает давление в бункере и конической камере. Другая часть газа по изогнутой трубке 16 циклонной камеры 15, встречая сопротивление струи воздуха, поступающего по центральному каналу циклонной камеры, создает завихрение флюса и увлекает его в рукав. Для поддержания расчетного давления флюсопитатель снабжается предохранительными мембранами 18, разрывающимися при давлении свыше 5 кгс/см2.
Для резки применяется ручной резак марки РФР-5 (рис. 93) или машинный — марки РФМ-5 (рис. 94). В сравнении с обычными резаками указанные резаки
имеют расширенные каналы кислородопровода с удлиненным перед соплом прямолинейным каналом режущего кислорода.
Копьедержатель представляет собой устройство, которое позволяет закреплять стальные трубки различных диаметров, обеспечивая плотное прижатие торца трубки к уплотняющей прокладке, что исключает утечку кислорода и флюса. Копьедержатель представлен на рис. 95. Кислород по шлангу через ниппель 1 и вентиль 2 поступает в инжектор 3, который обеспечивает подсос флюса кислородной струей, выходящей под большим давлением из центрального канала. Закрепление и плотное прижатие трубки 6 осуществляется болтовыми зажимами 5 и втулкой 4.

Рис. 93. Ручной резак РФР-5 установки УФР-5

Рис. 94. Машинный резак РФМ-5 установки УФР-5

Рис. 95. Копьедержатель установки УФР-5

Категория: Газовая сварка и резка металлов. | Просмотров: 719 | Добавил: Саша | Теги: металл, Флюс, схема, кислород. газ, резак, ацетилен
справочник оборудование сварка фото сварщик изготовление ремонт цветы растения штамп пресс-форма ГАЗ семейное свойства сборка слесарь схема электроды Характеристики инструмент металл технология Сталь процесс печь обработка Фотоальбом деталь электрод конструкция режим бисер пресс модель литье опока характеристика форма АЛЬБОМ Подшипник
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Copyright MyCorp © 2017
Бесплатный хостинг uCoz