Что такое техпроцесс в микрочипах и как он влияет на производство полупроводников | Технологии | Блог | Клуб DNS

Процессоры

Что такое техпроцесс в микрочипах и как он влияет на производство полупроводников

Что такое техпроцесс в микрочипах и как он влияет на производство полупроводников

Аватар пользователя

Содержание

Содержание

Одна из главных характеристик процессоров и других микрочипов — техпроцесс. Что означает этот термин и насколько он влияет на производительность — разберемся в этом блоге.

Что такое техпроцесс

Ключевым элементом практически каждой вычислительной схемы является транзистор. Это полупроводниковый элемент, который служит для управления токами. Из транзисторов собираются основные логические элементы, а на их основе создаются различные комбинационные схемы и уже непосредственно процессоры.

Чем больше транзисторов в процессоре — тем выше его производительность, ведь можно поместить на кристалл большее количество логических элементов для выполнения разных операций.

В 1971 году вышел первый микропроцессор — Intel 4004. В нем было всего 2250 транзисторов. В 1978 мир увидел Intel 8086 и в нем помещались целых 29 000 транзисторов. Легендарный Pentium 4 уже включал 42 миллиона. Сегодня эти числа дошли до миллиардов, например, в AMD Epyc Rome поместилось 39,54 миллиарда транзисторов.

МодельГод выпускаКол-во транзисторов
Xeon Broadwell-E520167 200 000 000
Ryzen 5 1600 X20174 800 000 000
Apple A12 Bionic (шестиядерный ARM64)20186 900 000 000
Qualcomm Snapdragon 8cx20188 500 000 000
AMD Ryzen 7 3700X20195 990 000 000
AMD Ryzen 9 3900X20199 890 000 000
Apple M1 ARM202016 000 000 000

Много это или мало? На 2020 год на нашей планете приблизительно 7,8 миллиардов человек. Если представить, что каждый из них это один транзистор, то полтора населения планеты
с легкостью поместилась бы в процессоре Apple A14 Bionic.

В 1975 году Гордон Мур, основатель Intel, вывел скорректированный закон, согласно которому число транзисторов на схеме удваивается каждые 24 месяца.

Нетрудно посчитать, что с момента выхода первого процессора до сего дня, а это всего-то 50 лет, число транзисторов увеличилось в 10 000 000 раз!

Казалось бы, поскольку транзисторов так много, то и схемы должны вырасти в размерах на несколько порядков. Площадь кристалла у первого процессора Intel 4004 — 12 мм², а у современных процессоров AMD Epyc — 717 мм² (33,5 млрд. транзисторов). Получается, по площади кристалла процессоры выросли всего в 60 раз.

Как же инженерам удается втискивать такое огромное количество транзисторов в столь маленькие площади? Ответ очевиден — размер транзисторов также уменьшается. Так
и появился термин, который дал обозначение размеру используемых
полупроводниковых элементов.

Упрощенно говоря, техпроцесс — это толщина транзисторного слоя, который применяется в процессорах.

Чем мельче транзисторы, тем меньше они потребляют энергии, но при этом сохраняют текущую производительность. Именно поэтому новые процессоры имеют большую вычислительную мощность, но при этом практически не увеличиваются в размерах
и не потребляют киловатты энергии.

Какие существуют техпроцессы: вчера и сегодня

Первые микросхемы до 1990-х выпускались по технологическому процессу 3,5 микрометра. Эти показатели означали непосредственно линейное разрешение литографического оборудования. Если вам трудно представить, насколько небольшая величина в 3 микрометра, то давайте узнаем, сколько транзисторов может поместиться в ширине человечного волоса.

Уже тогда транзисторы были настолько маленькими, что пару десятков с легкостью помещались в толщине человеческого волоса. Сейчас техпроцесс принято соотносить с длиной затвора транзисторов, которые используются в микросхеме. Нынешние транзисторы вышли на размеры в несколько нанометров.

Для Intel актуальный техпроцесс — 14 нм. Насколько это мало? Посмотрите в сравнении
с вирусом:

Однако по факту текущие числа — это частично коммерческие наименования. Это означает, что в продуктах по техпроцессу 5 нм на самом деле размер транзисторов не ровно столько, а лишь приближенно. Например, в недавнем исследовании эксперты сравнили транзисторы от Intel по усовершенствованному техпроцессу 14 нм и транзисторы от компании TSMC на 7 нм. Оказалось, что фактические размеры на самом деле отличаются не на много, поэтому величины на самом деле относительные.

Рекордсменом сегодня является компания Samsung, которая уже освоила техпроцесс 5 нм. По нему производятся чипы Apple A14 для мобильной техники. Одна из последних новинок Apple M1 — первый ARM процессор, который будет установлен в ноутбуках от Apple.

Продукцию по техпроцессу в 3 нм Samsung планирует выпускать уже к 2021 году. Если разработчикам действительно удастся приблизиться к таким размерам, то один транзистор можно будет сравнить уже с некоторыми молекулами.

Насколько маленьким может быть техпроцесс

Уменьшение размеров транзисторов позволяет делать более энергоэффективные и мощные процессоры, но какой предел? На самом деле ответа никто не знает.

Проблема кроется в самой конструкции транзистора. Уменьшение прослойки между эмиттером и коллектором приводит к тому, что электроны начинают самостоятельно просачиваться, а это делает транзистор неуправляемым. Ток утечки становится слишком большим, что также повышает потребление энергии.

Не стоит забывать, что каждый транзистор выделяет тепло. Уже сейчас процессоры Intel Core i9-10ХХХ нагреваются до 95 градусов Цельсия, и это вполне нормальный показатель. Однако при увеличении плотности транзисторов температуры дойдут до таких пределов, когда даже водяное охлаждение окажется полностью бесполезным.

Самые смелые предсказания — это техпроцесс в 1,4 нм к 2029 году. Разработка еще меньших транзисторов, по словам ученых, будет нерентабельной, поэтому инженерам придется искать другие способы решения проблемы. Среди возможных альтернатив — использование передовых материалов вместо кремния, например, графена.

О техпроцессе в компьютерном процессоре

Добрый день, уважаемые любители компьютерного железа. Сегодня мы поговорим о том, что такое техпроцесс в процессоре. На что влияет данная величина, как помогает при работе компьютера, за что отвечает и так далее.

p, blockquote 1,0,0,0,0 —>

Начать хотелось бы с того, что процессоры состоят из транзисторов. Под крышкой теплораспределителя находится сам кристалл ЦП на кремниевой подложке, в состав которого входит миллиарды миниатюрных транзисторов. О внутренностях CPU – в отдельной статье.

p, blockquote 2,0,0,0,0 —>

Их габариты настолько крошечные, что измеряются в нанометрах. Отсюда и берет свое начало величина.

Возьмем к примеру компанию AMD и ее процессорные ядра семейства Bulldozer и Liano, выполненные по нормам 32 нм. На площади кристалла размером всего 315 мм2 размещено 1,2 млрд транзисторов. Если сравнивать с более старой технологией 45 нм, в которой на подложке 346 мм2 находилось «только» 900 млн транзисторов – прогресс очевиден.

p, blockquote 4,0,1,0,0 —>

Уменьшение, а точнее оптимизация техпроцесса дает следующие преимущества:

Эволюция техпроцесса

Если покопаться в истории полупроводников 70‑х и 80‑х годов, то можно встретить устройства, разработанные по нормам техпроцесса 3 мкм. К такому технологическому прорыву впервые пришли компании Zilog в 1975 году и Intel в 1979 году соответственно. p, blockquote 5,0,0,0,0 —>

Компании активно развивали технологии и совершенствовали литографическое оборудование.В начале-середине 90‑х, прогресс достиг новых высот и на рынке стали появляться модели вроде Intel Pentium Pro и MMX, а также знаменитая «улитка» Pentium II.

p, blockquote 6,0,0,0,0 —>

Все изделия выполнялись по нормам процесса 0,35 мкм, т.е. 350 нм. Буквально через 10 лет технологии позволили сократить размер транзистора втрое, до 130 нм, и это был прорыв.Однако культовый период пришелся на 2004 год, когда инженеры начали осваивать для себя 65 нм. Тогда мир увидел знаменитые Pentium 4, Core 2 Duo, а также AMD Phenom X4 и Turion 64 x2. В это же время рынок наводнили чипы Falcon и Jasper для Xbox 360.

p, blockquote 7,0,0,0,0 —>

Текущий период разработки

Плавно подбираемся к современным разработкам и начнем со все еще актуального процесса 32 нм – эпоха Intel Sandy Bridge и AMD Bulldozer.

p, blockquote 8,0,0,0,0 —>

Синему лагерю удалось создать кристалл с частотой до 3,5 ГГц, на который можно поместить до 4 ядер и графический чип частотой до 1,35 ГГц. Также в чип встроили северный мост, PCI‑E контроллер версии 2.0, поддержку памяти DDR3. Все ядра получили по 256 КБ кэша L2 и до 8 МБ L3. И все это размещалось на подложке 216 мм2

p, blockquote 9,1,0,0,0 —>

Красные же умудрились разместить на подложке до 16 процессорных ядер частотой до 4 ГГц с поддержкой передовых на 2011 год инструкций x86, ввести поддержку Hyper Transport и оснастить чипы поддержкой DDR3.

p, blockquote 10,0,0,0,0 —>

Переход на 22 нм осуществил только Intel, добавив своим продуктам Ivy Bridge и Haswell вроде Core i5, i7 и Xeon более высокую производительность при сниженном энергопотреблении. Архитектура не претерпела значительных изменений.

Литография 14 нм подарила миру в 2017 году новый виток противостояния между AMD Ryzen и Intel Coffee Lake. В первом случае имеем совершенно новую архитектуру и признание во всем мире после многолетнего застоя. Во втором же – увеличение ядер на подложке в десктопном сегменте. p, blockquote 11,0,0,0,0 —>

Дополнительно можно отметить снижение энергопотребления, добавление новых инструкций, снижение размера кремниевой пластины и повышение мощности в станах двух лагерей.Теперь ждем выход чипов, построенных по нормам 10 нм, который на данный момент доступен лишь в мобильном сегменте (Quallcomm Snapdragon 835/845, Apple A11 Bionic).

p, blockquote 12,0,0,0,0 —>

Зачем уменьшать техпроцесс?

Как я уже говорил выше, оптимизация литографии ведет к размещению большего числа транзисторов на подложке меньшего размера. Говоря простым языком, на одной площади можно расположить не 1, а 1,5 млрд транзисторов, что ведет к повышению производительности без увеличения тепловыделения.

p, blockquote 13,0,0,1,0 —>

Таким образом устанавливается больше ядер, вспомогательных компонентов и систем управления шинами.

Коэффициент умножения системной шины процессора также возрастает, а значит и его мощь растет.

p, blockquote 15,0,0,0,0 —>

На данный момент оптимальными процессорами, которые вобрали в себя самое лучшее из современных технологий, можно назвать Intel 8700k и AMD Ryzen 1800x. Есть конечно и более новый вариант от «красных» в лице Ryzen 2700 (12 нм), но его производительность немного скромнее.

Надеемся, вы поняли суть, которую я хотели донести до вас в этой статье. В следующих обзорах мы коснемся таких понятий как разгон, нагрев, охлаждение и прочих животрепещущих вопросов, которые требуют пояснения. Оставайтесь с нами и следите за новыми публикациями. Удачи! p, blockquote 16,0,0,0,0 —>

p, blockquote 17,0,0,0,0 —> p, blockquote 18,0,0,0,1 —>

Для тех, кто хочет знать больше:

Спасибо! Вы успешно подписаны на нашу рассылку.

Перейдите на свою почту для подтверждения подписки

Добрый день!
У Вас весьма полезные статьи, я очень рада, что нашла Ваш блог и очень благодарна, что Вы его ведёте!
Спасибо Вам.

Пожалуйста. Спасибо за комментарий и вам за благодарность.)

Спасибо Андрей, очень полезная инфа

Народ, сколько ни читаю о техпроцессе и всё больше мне кажется, что этот показатель – глобальная афера производителей процессоров. Я понимаю смысл характеристики “тактовая частота”. Из курса физики я знаю, что частота – это “сколько раз в секунду”. Т. е. 3,5 ГГц – это 3,5 млрд. простых калькуляций в секунду. Чем быстрее процессор обсчитывает поступающую информацию, обрабатывает и выдаёт конечный результат процедуры, тем он мощнее, тут всё очевидно. Но почему 2 разных камня с одинаковой частотой, количеством ядер и кэша, но с разным техпроцессом, стоят порой в разы по-разному?! Ведь, будь у якобы крутого камня хоть 1 нм, но обсчитывает он один хрен со скоростью 3,5 ГГц, значит – скорость его работы ни на йоту не выше. От характеристики “техпроцесс” зависит степень нагреваемости и энергопотребления, что важно для смартфонов, ведь в них не впихнёшь большие батарейку и кулер, от этого пострадает компактность устройства, которое превратится в здоровый такой кирпич. Но для домашних и офисных ПК размер значения практически не имеет, вес может быть любой (один раз притащил, поставил и забыл), электричества в розетке – жопой жуй, кулер – можно хоть турбину от самолёта поставить. На хрена писать эту характеристику для ПК-шных камней?! Может мне-дураку кто объяснить, как 2 ПК-шных проца могут стоить 15000 и 60000, никак не отличаясь друг от друга, кроме техпроцесса? А может, важность техпроцесса – это афера, как с айфонами, которые стоят в 5–10 раз дороже китайцем, которые по тех. характеристикам вообще ничем не отличаются? Айфон продаёт своё яблоко на корпусе, шильдик, признак успешности, а некоторые производители чипов решили также продавать за дорого мифический техпроцесс, который никто из нас проверить не может?! Или у кого-то дома завалялись парочка электронных микроскопов?

https://club.dns-shop.ru/blog/t-57-tehnologii/40391-chto-takoe-tehprotsess-v-mikrochipah-i-kak-on-vliyaet-na-proizvodstv/
https://infotechnica.ru/pro-kompyuteryi/o-protsessorah/pro-tehprotsesse/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Related Posts